

ILMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

### Retrieval of GOMOS bright limb profiles

Simo Tukiainen, E. Kyrölä, P. Verronen, D. Fus<mark>sen,</mark> L. Blanot, A. Piters, A. Hauchecorne, et al.

Finnish Meteorological Institute BIRA, ACRI-ST, KNMI, Service d'Aeronomie



## GOMOS

- on board the Envisat satellite, launched in 2002
- stellar occultation instrument
- scans the atmosphere between 10–120 km







#### During day occulations, both stellar and limb signal are recorded





METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

#### night vs. day occultation quality





#### **GOMOS** stray light





#### Stray light removal

• Step 1: Calculate mean relative stray light spectrum above 100 km. The signal is pure stray light.





- Step 2: Calculate 3rd degree polynomial fit for each wavelength using altitudes above  $\sim$ 80 km as the fitting range.
- Step 3: Extrapolate at low altitudes with the spectral shape of stray light as a constrain.





#### **Radiance ratio**



Ratio of 40 and 50 km.



#### Ratio comparison vs. OSIRIS



9



#### **Saturation**

Signal saturates below 30km between  ${\sim}400\text{--}530\text{nm}$ 





#### Inversion method

- Onion peeling type method (as used with OSIRIS)
- Weighted least squares fit of model and data for every layer
- ${\sim}70$  wavelengths in the 280–680 nm band
- MC model Siro for multiple scattering correction (LUT)



#### Multiple scattering LUT

- zenith: 40,45...,90
- azimuth: 40, 50,.., 180
- albedo: 0.1, 0.5, 0.9
- altitude: 15–70 km
- climatologies: tropic, mid (summer), mid (winter), antarctic, arctic



### Siro

- Backward Monte Carlo model of photon paths through the atmosphere
- 3D geometry, 1-N scattering orders, polarization, refraction..
- One 500wl UV-vis spectrum in  ${\sim}15$  min with 100000 photons





## O3 validation (GOMOS vs. GOMOS)

Year 2003, 30S–30N,  $\Delta$ lat  $< 1.5^{o}$ ,  $\Delta$ lon  $< 3^{o}$ ,  $\Delta$ time < 24 h:





## O3 validation (GOMOS vs. GOMOS)

Year 2003, 30S–60S,  $\Delta$ lat < 1.5°,  $\Delta$ lon < 3°,  $\Delta$ time < 24 h:





# O3 validation (GOMOS vs. OSIRIS)

Year 2003, 90S–90N,  $\Delta$ lat < 2°,  $\Delta$ lon < 4°,  $\Delta$ time < 2h:





## O3 validation (GOMOS vs. OSIRIS)

Year 2003, 30S–30N,  $\Delta$ lat < 1°,  $\Delta$ lon < 2°,  $\Delta$ time < 24 h:





## O3 validation (GOMOS vs. OSIRIS)

Year 2003, 50S–60S,  $\Delta$ lat  $< 1^{o}$ ,  $\Delta$ lon  $< 2^{o}$ ,  $\Delta$ time < 24 h:





#### Conclusions

- Use of limb signal instead of stellar signal can vastly improve GOMOS day time  $O_3$  measurements.
- First validation results indicate better than 10% accuracy between 22–55 km.