

Using satellite measurements of stellar scintillation for mapping turbulence in the stratosphere

V. F. Sofieva⁽¹⁾, A.S. Gurvich⁽²⁾, F. Dalaudier⁽³⁾, and the GOMOS team⁽⁴⁾

(1) Finnish Meteorological Institute, Helsinki, Finland
 (2) A.M. Oboukhov Institute of Atmospheric Physics, Moscow, Russia
 (3) LATMOS (Service d'Aeronomie du CNRS), France
 (4) FMI, Finland; Service d'Aeronomie, France; IASB, Belgium, ACRI-ST, France, ESA/ESRIN, Italy; ESA/ESTEC, Netherlands

Outlines

- Methodology: using space-borne stellar scintillation measurements for studies of small-scale processes in the atmosphere
- Application: results of analysis of GOMOS/Envisat scintillation measurements

Introduction

- Gravity waves, their generation, propagation and breaking
- Global effects of (relatively) small-scale
 gravity waves
 - influence the stratospheric circulation
 - affect ice cloud formation and polar ozone loss
 - they play an important role in driving atmospheric circulations (including quasi-biennial oscillation)
 - play an important role in controlling temperatures in the Antarctic ozone hole
- Satellite observations of stellar scintillations is the new approach for study of small-scale processes in the atmosphere

Scintillation of stars

Scintillation of stars: a simplified qualitative explanation

S

Past and present space-borne stellar scintillation measurements

- Past:
 - > EFO-2 photometer, Russian MIR station (1996-1999)
 - Sampling frequency up to 16 kHz
 - Central wavelength 485 nm
 - Man-controlled photometer (~100 occultations, within $\pm 60^{\circ}$ latitudinal band)
- Present: scintillation measurements by GOMOS fast photometers (since March 2002)
 - > First bi-chromatic scintillation measurements
 - Blue 470-520 nm
 - Red 650-700 nm
 - Sampling frequency 1 kHz
 - Global coverage
 - > Objectives
 - Scintillation correction of spectrometer data
 - High resolution temperature profile
 - Small scale structures of air density, stratospheric dynamics

EFO-2 fast photometer

GOMOS fast photometer

General strategy for retrieval of information about air density irregularities

- 3D distribution from 1D scintillation measurements?
 - > The problem is severely ill-posed
- Approach proposed in [Gurvich and Kan, 2003]
 - > 1 step. The spectrum of the air density irregularities is parameterized
 - > 2 step. 3D-spectrum of air density irregularities →1d-scintillation spectrum at observation point (The theoretical relations are found)
 - > 3 step. The parameters of the spectral model are retrieved via fitting experimental scintillation spectra

Structure of air density irregularities

- Anisotropic irregularities
 - Elongated in horizontal direction
 - Generated by internal gravity waves
- Isotropic irregularities (turbulence)
 - Result from breaking of internal gravity waves
 - > Dynamic instabilities
- Two-component spectral model of relative fluctuations of air density

Spectrum of anisotropic irregularities

 corresponds to anisotropic irregularities generated by a random ensemble of internal gravity waves

- \succ C_W is the structure characteristic
- > η is the anisotropy coefficient
- > $2\pi/\kappa_0$ is the outer scale
- > $2\pi/\kappa_W$ is the inner scale
- The associated 1D vertical spectrum for $\kappa_0 << \kappa_z << \kappa_W$ corresponds to the model of the saturated gravity waves

$$V(\kappa_z) \approx C_W \frac{2\pi}{3} \kappa_z^{-3} \qquad \qquad V_{\delta T/T} = A \frac{\omega_{BV}^4}{g^2} \kappa_z^{-3}$$

Spectrum of isotropic irregularities

Spectrum of locally isotropic turbulence (Kolmogorov model)

$$\Phi_{K}(k) = 0.033 C_{K} k^{-11/3} \exp(-(k/\kappa_{K})^{2})$$
$$k^{2} = k_{x}^{2} + k_{y}^{2} + k_{z}^{2}$$

> C_{κ} is the structure characteristic

- > κ_{κ} is the wavenumber corresponding to inner scale of isotropic irregularities (Kolmogorov scale)
- The corresponding 1D spectrum follows well-known -5/3 power law
- Individual turbulent patches are not resolved, C_K represents the effective value in the region of interaction of light wave and the turbulent atmosphere

Model of 1D vertical spectra of air density irregularities

Modelled scintillation spectra

- Stratospheric distortion of light rays
 - > Distortion of optical path (eikonal)
- Frozen field assumption
- Phase screen approximation

• Scintillation spectrum (weak scintillation)

Scintillation spectra

Inversion

• Maximum likelihood method, which is equivalent to minimization of

$$\chi^{2} = \left(C_{K} V_{iso} + C_{W} \mathbf{V}_{aniso}(\kappa_{W}, \kappa_{0}) - \mathbf{V}^{meas} \right) \mathbf{S}^{-1} \left(C_{K} V_{iso} + C_{W} \mathbf{V}_{aniso}(\kappa_{W}, \kappa_{0}) - \mathbf{V}^{meas} \right)$$

- Combination of linear and non-liner optimization
 - > Non-linear fit (Levenberg-Marquardt) for κ_W and κ_0
 - > Linear fit (weighted least-squares method) for C_{κ} and C_{W}

Filtering quasi-periodic structures

Altitude range

Indication on gravity wave breaking in polar night jet

• Qualitative: Sofieva et al. (2007), Global analysis of scintillation variance: Indication of gravity wave breaking in the polar winter upper stratosphere, *Geophys. Res. Lett.*, 34, L03812, doi:10.1029/2006GL028132

Latitude-time sections at selected altitudes

- Large enhancements of both GW and turbulent components at high latitudes in winter: seems to be GW breaking related to polar night jet
- Smaller Cw values immediately after sudden stratospheric warmings

C_{T}^{2} in SH polar winter stratosphere (at 42 km)

C_T^2 in tropics (at 42 km)

- Turbulence intensity is smaller in tropics than in polar regions; it has a pronounced zonal structure
- Average values of C_{τ}^2 follow the sub-solar latitude
- Almost all of the local enhancements are over continents
 - Many of enhancements correspond well to the
- -3.8 typical regions of deep convection
 - No systematic increase of C_{T}^{2} over large mountain regions is observed

Gurvich et al., 2007, GRL

Evolution of C_T^2 at 80 N during the sudden stratospheric warming in December 2003

Sofieva et al., (2007): Reconstruction of internal gravity wave and turbulence parameters in the stratosphere using GOMOS scintillation measurements, *Journal of Geophys. Res.*, 112, D12113, doi:10.1029/2006JD007483

GW spectra parameters in 2003

GW potential energy per unit mass

$$E_p = \frac{2\pi}{3} \left(\frac{g}{\omega_{BV}}\right)^2 C_W \kappa_0^{-2}$$

Summary, discussion, future work

- The presented results are the start in studying small-scale air density irregularities
- Strength of scintillation method:
 - It covers the wavenumber range of transition of GW spectrum to turbulence -> possibility of visualizing GW breaking
 - Scintillation are affected by small-vertical-scale GW -> importance for GW parameterizations in GCM models
 - Other measurements at such small vertical resolution are scarce in this altitude range
- The processing of the 2002-Jan 2005 dataset has been recently completed, the data analyses are on-going