

ECMWF, a gravity wave resolving global model and its validation with SABER and future limb imaging instruments (PREMIER)

Sebastian Höfer, Catrin Lehmann, Peter Preusse, Manfred Ern, Martin Riese

Research Center Jülich Institute for Chemistry and Dynamics of the Geosphere ICG-1: Stratosphere

18.11.2009

PREMIER 00000

ECMWF

- T799, N400,
 91 hybrid levels
- 0.25 ° horizontal resolution
- 500 m vertical resolution
- Altitude-range: up to 80 km
- shown: 10.08.2006 at 28 km

Horizontal wavelength

waves with horizontal wavelength > 200 km are resolved

Vertical wavelength

waves with vertical wavelength > 1 km are resolved

SABER

- along track
 350 550 km
- vertical resolution $\approx 400 \, \mathrm{m}$
- Altitude-range:
 15 155 km
- orbit inclination: 74.1 °
- orbit altitude: 625 km
- \approx 14 orbits per day
- shown: 10.08.2006 at 28 km

Sensitivity-function

- IR limb sounder can resolve waves with horizontal wavelength $>200\,{\rm km}$ and vertical wavelength $>5\,{\rm km}$
- * Preusse et al. (2002)

ECMWF vs SABER

- estimate of background-temperatures
 → Kalman-Filter
- estimate of temp. amplitudes, vertical wavelength and phases of the two dominant wave compounds → MEM/HA

- wave amplitudes are too low (factor of two)
- over 40 km altitude GWs are strongly damped by Rayleigh friction

local time-series at 28 km altitude

- mountain-waves are well represented in the model data
- ECMWF temperature amplitudes are too low
- convection not well reproduced

* Schroeder et al. (2009)

PREMIER

Sebastian Höfer (ICG-1)

How to receive momentum flux

•
$$(F_{\rho x}, F_{\rho y}) = \overline{\varrho} \cdot (\overline{u'w'}, \overline{v'w'}) \longrightarrow \mathsf{ECMWF}$$

•
$$(F_{px}, F_{py}) = \frac{1}{2} \varrho \frac{(k,l)}{m} \left(\frac{g}{N}\right)^2 \left(\frac{\hat{T}}{T}\right)^2$$

• using last square fit do determine k, l, φ_0 $\varphi_i = kx_i + ly_i + \varphi_0$

Momentum Flux

- left: via temperature data
- right: via wind data

Summary

- ECMWF can well resolve GWs over mountain regions and the edge of the Antarctic polar vortex, but the ECMWF temperature amplitudes are too low
- ECMWF data can be used to determine momentum flux on PREMIER measurement grid
- Both procedures of MF calculation show similar results

