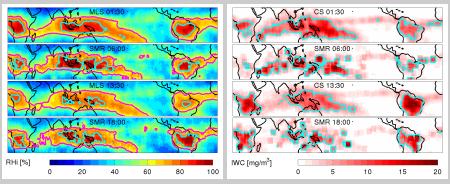


Odin-SMR measurements of tropical upper tropospheric water

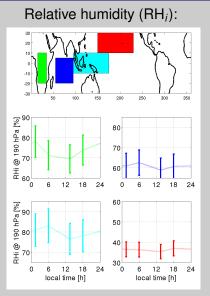
Patrick Eriksson, Bengt Rydberg and Marston Johnston

Chalmers University of Technology (Patrick.Eriksson@chalmers.se)

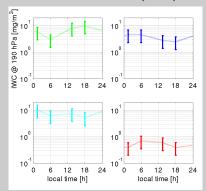

Overview

- For inversion details see: Rydberg et al. AMT, 2009
- Single spectra with tangent altitudes below 9 km
 - footprint $\approx 40\,x\,2\,km^2$
- The dataset
 - + 8 years
 - sparse
- Relative humidity [%]
 - + moderate/low cloud impact on RH_i retrievals
 - individual RH_i a priori influenced (or noisy)
- Ice water content [g/m³]
 - + covers most important range, no saturation
 - cloud inhomogeneities and particle size distribution (PSD) are main retrieval uncertainties
- High random errors, but what about systematic errors?

RH_{*i*} and IWC from MLS, CloudSat and SMR Long term averages for NH winter+spring, 11 - 15 km

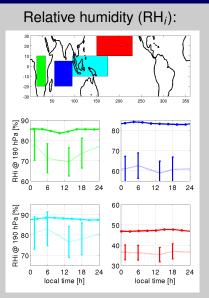

Relative humidity (RH_i):

Ice water content (IWC):

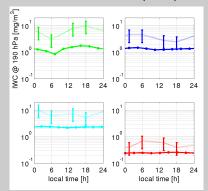


- Different time spans covered / Chalmers CloudSat inversions
- Total averages
 - SMR 0.75 % RH_i below MLS
 - SMR here 19% below CloudSat

Regional diurnal variations MLS and CloudSat: 1.30/13.30, SMR: 6.00/18.00

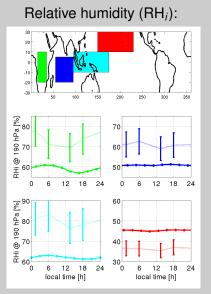


Ice water content (IWC):

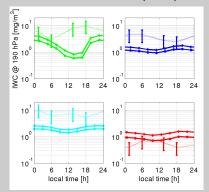


RH_i: ±10 % !?
IWC: ±40 % (due to PSD)

Comparison between satellite and ECHAM Precipitating part of IWC missing for ECHAM

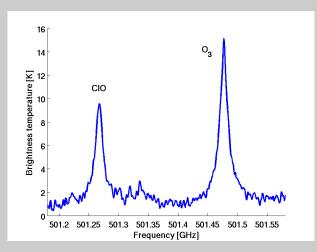


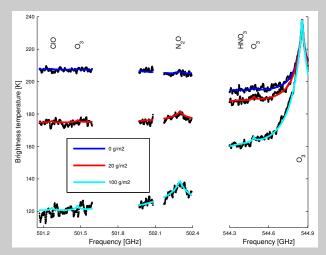
Ice water content (IWC):



 Not complete IWC for ECHAM!

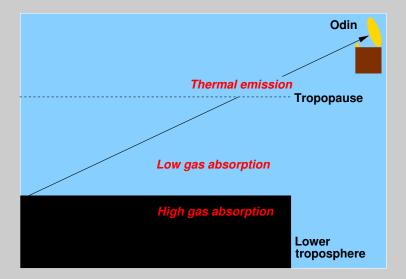
Comparison between satellite and another GCM Preliminary results


Ice water content (IWC):

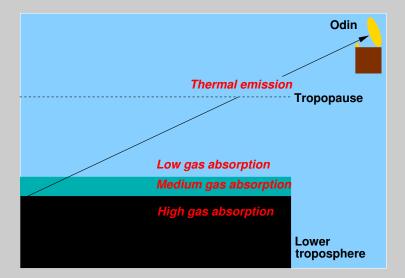

 Upper model line estimate of complete IWC

Inversion issues

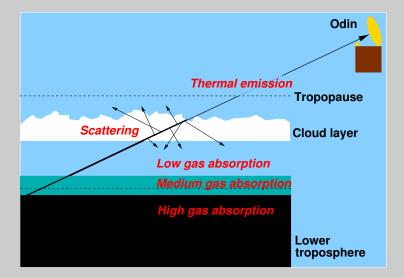
Example on optically thin spectrum Average of some spectra around $z_t = 35 \text{ km}$



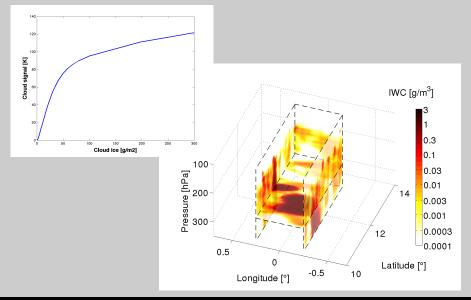
Optically thick Odin-SMR spectra Representative examples for $z_t \leq 9 \text{ km}$


All radiative transfer calculations performed by ARTS

Measurement principle



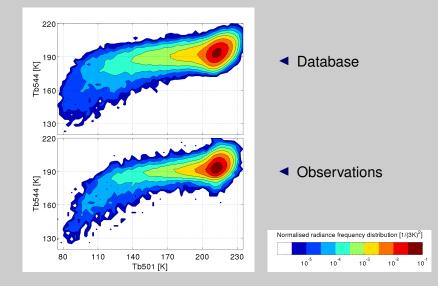
Measurement principle



Measurement principle

Cloud inhomogeneities must be considered CloudSat used to generate 3D cloud scenarios

- Create a retrieval database (**x**_i)
- Retrieved state (x̂) is a weighted mean of x_i


$$\hat{\mathbf{x}} = rac{\sum_{i} \mathbf{x}_{i} P(\mathbf{y} | \mathbf{x}_{i})}{\sum_{i} P(\mathbf{y} | \mathbf{x}_{i})}$$

where

$$P(\mathbf{y}|\mathbf{x}_i) \sim \exp\left(-rac{(\mathbf{y} - \mathbf{F}(\mathbf{x}_i))^T \mathbf{S}_e^{-1}(\mathbf{y} - \mathbf{F}(\mathbf{x}_i))}{2}
ight)$$

- + Retrievals very fast when database is at hand
- Required size of database strongly dependent on dy
- Database must mimic reality

Quality of SMR retrieval database? Comparison of brightness temperature distributions

Conclusions

- Long, but sparse, dataset extracted
- Relative humidity
 - low cloud impact, but only average values useful
 - agreement with MLS
 - very good above 13.5 km
 - MLS wetter for high RH_i below (~10 RH_i)
 - improvements possible with "limb inversions"
- Ice water content
 - cloud inhomogeneities handled carefully
 - PSD assumptions: a problem for all sensors
 - good agreement with CloudSat (for same PSD)
- Details in Rydberg et al., Atmos. Meas. Tech., 2009.
- The diurnal cycle in climate models is being studied
 - main problem is to get complete IWC out of models