

The Atmospheric Chemistry Experiment (ACE): Status and Latest Results

Chris Boone and Peter Bernath

5th Limb Conference and Workshop November 16, 2009

ACE Soldiering On

ACE launched August 2003 Science operations began February 2004 Satellite and all instruments continue nominal operation. Version 3.0 of the data processing began in October 2009. Version 2.2 planned for public release.

Waterloo

Instruments

Infrared Fourier Transform Spectrometer operating between 2 and 13 microns with a resolution of 0.02 cm⁻¹ (± 25 cm MPD) 2-channel visible/near infrared Imagers, operating at 0.525 and 1.02 microns UV / Visible spectrometer (MAESTRO) 0.285 to 1.03 microns, resolution ~1-2 nm Suntracker Startracker

ACE-FTS (ABB-Bomem)

Isotopologues

In ACE-FTS version 3.0 (23 subsidiary isotopologues): H₂¹⁸O, H₂¹⁷O, HDO, ¹³CO₂, ¹⁸O¹²C¹⁶O, ¹⁷O¹²C¹⁶O, ¹⁸O¹³C¹⁶O, ¹⁸O¹⁶O¹⁶O, ¹⁶O¹⁸O¹⁶O, ¹⁷O¹⁶O¹⁶O, ¹⁶O¹⁷O¹⁶O, ¹⁴N¹⁵N¹⁶O, ¹⁵N¹⁴N¹⁶O, N₂¹⁸O, N₂¹⁷O, ¹³C¹⁶O, ¹²C¹⁸O, ¹²C¹⁷O, ¹³CH₄, CH₃D, OC³⁴S, O¹³CS, OC³³S

Waterloo

Modeling mesospheric CO₂

In the CMAM model, cannot reconcile CO_2 and CO.

Similar study underway using the WACCAM model.

First multi-year occultation observations of CO₂ in the MLT by ACE satellite: observations and analysis using the extended CMAM, S. R. Beagley, C. D. Boone, V. I. Fomichev, J. J. Jin, K. Semeniuk, J. C. McConnell, and P. F. Bernath, Atmos, Chem. Phys. Discussions, 9, 11551-11587 (2009).

Technical Note: Feasibility of CO₂ profile retrieval from limb viewing solar occultation made by the ACE-FTS instrument, P. Y. Foucher, A. Chedin, G. Dufour, V. Capelle, C. D. Boone, and P. Bernath, Atmos. Chem. Phys., 9, 2873-2890 (2009).

N20 ------002 ------

- •Analysis of CO₂ spectral features used to determine ACE-FTS pressure, temperature, and tangent heights, with CO₂ VMR fixed to an assumed value.
- •Retrieving CO₂ would be a circular problem

Waterloo •Generate independent tangent heights using the N_2 continuum.

CSA ASC

Two independent studies

Technical Note: Feasibility of CO₂ profile retrieval from limb viewing solar occultation made by the ACE-FTS instrument, P. Y. Foucher, A. Chedin, G. Dufour, V. Capelle, C. D. Boone, and P. Bernath, Atmos. Chem. Phys., 9, 2873-2890 (2009).

One study: CO2 isotopologue 1 above 10 km, OC¹⁸O below 12 km, scale latter results. Generate profiles. Other study: only use OC¹⁸O lines and acknowledge expected offset. Generate average value for 7-10 km.

Carbon dioxide (CO₂) retrievals from Atmospheric Chemistry Experiment (ACE) solar occultation measurements, Curtis P. Rinsland, Linda Chiou, Chris Boone, and Peter Bernath, J. Geophys. Res., in press

HCOOH

Global distribution of upper tropospheric formic acid from the ACE-FTS, G. Gonzalez Abad, P. F. Bernath, C. D. Boone, S. D. McLeod, G. L. Manney, and G. C. Toon, Atmos. Chem. Phys., 9, 8039-8047 (2009)

Growing season

Boreal fires + plant growth? Challenge for models.

Biomass burning

Growing season Biomass burning

A good test for chemistry transport - 160 models. H₂CO in the upper - 150 - 140 troposphere is mostly from - 130 - 120 secondary production. Need to - 100 90 80 properly model precursors, 70 60 50 40 transport, and chemistry. Current ²⁰ models are not yet up to the task.

University of Waterloo **Global upper-tropospheric formaldehyde: seasonal cycles observed by the ACE-FTS satellite instrument,** G. Dufour, S. Szopa, M. P. Barkley, C. D. Boone, A. Perrin, P. I. Palmer, and P. F. Bernath, Atmos. Chem. Phys., 9, 3893-3910 (2009).

NO_x Descent

Ratio of NO_x relative to the average of years without enhancement (2005, 2007, and 2008)

NO_x descent in the Arctic middle atmosphere in early 2009, C. E. Randall, V. L. Harvey, D. E. Siskind, J. France, P. F. Bernath, C. D. Boone, and K. A. Walker, Geophys. Res. Lett., 36, L18811, doi:10.1029/2009GL039706 (2009)

All is quiet in the north, until...

CSA ASC

Enhanced NO_x created in the mesosphere descends into the stratosphere within the polar vortex

HALOE Southern Hemisphere

HALOE Northern Hemisphere

Energetic Particle Precipitation Effects on the Southern Hemisphere Stratosphere in 1992-2005, C.E. Randall, V.L. Harvey, C.S. Singleton, S.M. Bailey, P.F. Bernath, M. Codrescu, H. Nakajima and J.M. Russel III, J. Geophys. Res, 112, D08308, doi:10.1029/2006JD007696 (2007)

Waterloo

New(?) threat to Arctic ozone

How new is it? HALOE coverage extended into high latitudes in April. Would not see enhancements in February and March. In 2004, 2006, and 2009, observed descent of enhanced NO_{x} in the NH polar vortex. Originally attributed to strong energetic particle precipitation (EPP) from the solar storm of Halloween 2003, until ACE saw enhancements in 2006 and 2009 when there was weak EPP.

The new world order?

Associated with a "remarkable" vortex recovery following a sudden stratospheric warming. A strong vortex led to enhanced adiabatic descent in the mesosphere. What was an unexpected occurrence in 2004 has now occurred 3 times in 6 years. Implications for Arctic ozone. Will the unusual meteorology linked to the effect persist? If so, what caused the change in atmospheric behavior?

It all seemed too easy...

University of Waterloo

Searching for weak spectral signatures in the troposphere (organics, CFCs, HCFCs). Bad residuals from stronger absorbers (e.g., CH_4 and H_2O) impeding the search. Limitations of using a simple Voigt. Implementing line mixing and alternative lineshapes (e.g., speed-dependent Voigt). Developed fast analytical approaches appropriate for "operational" retrievals.

P9 manifold in the v_3 band of CH₄

Measurement of the temperature dependence of line mixing and pressure broadening parameters between 296 and 90 K in the v3 band of 12CH4 and their influence on atmospheric methane retrievals, Didier Mondelain, Sebastien Payan, Wenping Deng, Claude Camy-Peyret, Daniel Hurtmans, and Arlan Mantz, J. Mol. Spec., 244, pp 130-137 (2007)

ACE results for P9

Residuals using Voigt lineshape

Residuals using line mixing

Along with line mixing parameters, also fitted intensities and the position for one of the lines.

Non-Voigt lineshape?

Acetone

Spectral signature for acetone visible in the residuals, but the region is polluted with bad residuals from both CH_4 (from line mixing) and H_2O .

University of Waterloo

0.986

1358

1360

1362

1364

1366

1368

Waterloo

Add in line mixing

Residuals using Voigt lineshape

Wavenumber (cm⁻¹)

H₂O lineshape

Bad H₂O residuals cause problems for other molecules (e.g., acetone, HFC-134a,...).
Not as straightforward as CH₄. Still haven't determined a reliable solution.
Rapid change of H₂O VMR in troposphere a challenge for working on a 1-km grid.
H₂O lab spectra from Manfred Birk at DLR.

A set of 27 air broadened H₂O spectra, plus 4 self broadened

Residuals using Voigt function

Adjusting broadening parameters

Speed-dependence

Air-broadened

 $\eta = 0$

Speed-dependent Voigt profile for water vapor in infrared remote sensing applications, Waterloo Chris D. Boone, Kaley A. Walker, and Peter F. Bernath, JQSRT, 105, 525-532 (2007).

A work in progress

Separate T-dependence for self-broadening

Note the different vertical scales. These residuals smaller than the air-broadened ones. Less noise.

Much work remains.

ACE satellite continues to collect measurements. Start to look at trends. Further refining spectral calculations. Seeking weaker and weaker signatures. Generating spectroscopic parameters from lab spectra. Unavailable elsewhere. Version 2.2 data slated for public release. Version 3.0 underway. A few months to catch up. Follow-on mission? Some preliminary studies.

Acknowledgement

